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• Goal: Partition the image into regions that approximate the input ( ) with spatial consistency ( ).Edata Epairwise

•  penalizes the difference between a pixel’s input color  and its region color .Edata Ip Rp

•  penalizes neighboring pixels with different region labels  and .Epairwise Lp Lq

• Overall objective function: E( f ) = Edata( f ) + λEpairwise( f )
•  controls the clumpiness of the regions in the output.λ
• We solve this problem with multi-label optimization [Boykov and Kolmogorov 2001].

Edata = ∑
p∈I

∥Rp − Ip∥2

Epairwise = ∑
p,q∈N
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• Qualitatively similar to those created by artists in a time-consuming manner.

• Easy to do palette-based recoloring on posters in real-time.

• Aesthetically outperform state-of-the-art automatic posterization tools.

• Limitations:
• Only allows real-time recoloring.

• Slow performance on outlier removal.

• Does not recognize the semantics of input images.
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• [Wang et al. 2019] observed that convex-hull based palettes are sensitive to 
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• K-means as a relaxation on the input RGB colors.
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